Chapter 6 - Polynomials $\$$ Polynomial Functions

6.1 Using Properties of Exponents

$$
a^{n}-a \times a \times a \times a \ldots n \text { times }
$$

Check out the rule sheet for exponents and scientific notation

- For $y_{1}=x \quad y_{1}=1,2,3,4,5,6 \ldots$ as \times goes from 1 to ∞
- For $y_{2}=x^{2} \quad y_{2}=1,4,9,16,25,36 \ldots$ as \times goes from 1 to ∞
- Given the 2 equations above, if you double x, how does y change?

$$
\begin{aligned}
& y_{1}=2 x \text { (just doubles) } \\
& y_{2}=?
\end{aligned}
$$

Try: if the volume of a sphere is modeled by: $\frac{4}{3} \pi r^{3}$ what does the formula look like if you double the radius? How much bigger is the volume when you double the radius?

Practice: Pg. 326 2,10,13,17,27,33,45,48,50,53
6.2 EValuating \downarrow Graphing Polynomial Functions
$F(X)=4 x^{2}-7 x^{5}+2 x^{2}-4+6 x^{3} \quad \leftarrow$ standard form
Leading coefficient - censtant in front of the variable with the highest exponent. Above its_? Constant term - term with n^{0} or no variable

1) Classify functions by "degree" (highest)

- Linear function - highest power is x^{1}
- Quadratic function - highest power is x^{2}
- Cubic function - highest power is x^{3}
- Quartic function - highest power is x^{4}

2) Classify by \# of terms

- Constant - 1 term with no variable
- Binomial -2 terms; $2 x+1$ or $x^{2}-3$
- Trinomial -3 terms $x^{2}+3 x-4$
"Solving" Quadratics -

1) Try direct substitution -
2) Synthetic Division or "substitution" - "add down, multiply up"
3) Look at end behavior - the function will behave (at large values of x) like its highest power

Group: Pg. 333 15-26,49-52
Practice: pg. 333 4-5,31,35,37,41,45,47,65,69

6.3 Adding, SubtraCting + Multiplying Polynomials

2 ways - horizontal or vertical add/subtract/multiply

Practice: Pg. 341 2,12,17,21,29,33,44,62,72

6.4 Factoring $\$$ Solving Polynomial Equations

Common factoring: $x^{2}-x-12=(x+3)(x-4)$
Perfect square: $x^{2}+10 x+25=(x+5)^{2}$
Diff of 2 squares: $x^{2}-16=(x+4)(x-4)$
Monomial factors: $5 x^{2}+15 x=5 x(x+3)$
Cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Grouping:
Quadratic factoring - replacing x^{2} with x (used when you have squares with even exponents) $81 x^{4}-16=\left(9 x^{2}\right)^{2}-(4)^{2}=$ difference of 2 squares $\left(9 x^{2}-4\right)\left(9 x^{2}+4\right)=$ another diff of 2 squares

$$
\left(9 x^{2}+4\right)(3 x-4)(3 x+4)
$$

The factors, set $=0$ are called solutions, roots, zeros or x-intercepts
Group: Pg. 348 28-32 evens
Practice: Pg. 348 3,6,19,27-31,33,45,51,59,60,71,73,77,79,81,85

6.5 The Remainder $\$$ Factor Theorems

Polynomial division can by done normally or by synthetic division Zeros - are the factors that divide into the polynomial with no remainder

Practice: Pg. 356 5,9,13,15,23,27,31,39,43,47,51,55
6.6 Finding Rational Zeros

Rational zero theorem: $\quad f(x)=64 x^{3}+120 x^{2}-34 x-105$
has factors: $\frac{-3}{2}, \frac{-5}{4}, ~ \frac{7}{8} \longrightarrow \begin{aligned} & \text { Numerators all } \\ & \text { factors of } 105(\mathrm{p})\end{aligned}$

- factors will be in the form $\frac{p}{q}$

Denominators all
factors of 64 (9)

Practice: Pg. 362 1,5,11,25,19,23,29,39,43,45,53

6.7 Using the Fundamental Theorem of Algebra

Multiplicity - how many times the factor Can be taken out of the polynomial $x^{\text {odd }}$ - is guaranteed one real root (Zero)
x^{n} - has n total roots (including real and complex/imaginary)
Complex/imaginary roots always come in pairs (think of the quadratic formula with \pm answers)
***Find the real roots first. You should have a quadratic left to factor.
Roots of: $\quad 4,-2$ would yield factors of $(x-4)$ and ($x+2$)
$3 i,-3 i$ would yield factors of $(x-3 i)$ and $(x+3 i)$

- what quadratic has the factors $3 i$,-3i??? $(x-3 i)(x+3 i)$ Foil it and find out!!

$$
i=\sqrt{-1}
$$

$$
i^{2}=-1
$$

Practice: Pg. 369 1,3,5,9,17,19,23,29,41,45,57
6.8 Analyzing Graphs of Polynomial Functions

Zeros of a polynomial are where the graph crosses or touches the x-axis (except imaginary)

- If multiplicity is even, the function crosses the x-axis
- If multiplicity is odd, the function touches and turns Turning points - local max or local min
- x^{n} has $n-1$ turning points
- If function has n zeros, then it has exactly n-1 turning points

Groups: with graphing calculator pg. 376 8-11,29-34
Practice: Pg. 376 1-3,7,13,17,19,23,24,26
6.9 Modeling with Polynomial Functions
$a=$ Constant in front of the polynomial: $f(x)=a(x+3)(x-2)(x-5)$
to find a, plug in an (x, y) point on the function
direction of function - watch the sign on a, but also plug in the zeros everywhere except where it would make the function go to zero:

$$
\begin{aligned}
f(x)= & 2(x+3)(x-2)(x-5) \rightarrow \text { zeros are }-3,2,5 \\
& 2 x^{3} \text { will be a normal } x^{3} \text { (down on left, up on right) } \\
& 2(-3-2)(-3-5)=2(-5)(-8)=80 \leftarrow \text { line through }-3 \text { will be }+ \text { slope } \\
& 2(2+3)(2-5)=2(5)(-3)=-30 \leftarrow \text { line through } 2 \text { will be }- \text { slope } \\
& 2(5+3)(5-2)=2(8)(3)=40 \leftarrow \text { line through } 5 \text { will be }+ \text { slope }
\end{aligned}
$$

